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Abstract
An exact expression is derived for the matrix Green’s function of a clean
superconducting layered structure with an arbitrary number of interfaces.
A multiple-scattering approach is employed, in which the interfaces act as
the scattering centres. Some initial applications of the theory to systems
with transverse dimensions which vary from narrow to wide are given. The
local density of states is calculated for an SNS and for an SNSNS junction
(‘S’ standing for a superconducting layer and ‘N’ for a normal layer). For cer-
tain critical transverse widths the exact theory shows remarkable features not
seen in the Andreev approximation. If the gap function for the systems is cal-
culated self-consistently it turns out that for transverse dimensions smaller than
twenty per cent of the superconducting coherence length, superconductivity is
suppressed.

1. Introduction

Since the work of Gor’kov [1] and Bogoliubovet al [2], all basics have seemed to be
available for a microscopic description of conventional superconductivity. However, practical
applications of the theory, such as the calculation of the proximity effect in real inhomogeneous
systems, are not straightforward at all. It is to the credit of Eilenberger [3] that he derived
equations which are valid in the quasiclassical approximationand which are used extensively in
present-day mesoscopic physics. The quasiclassical approximationamounts to the assumption
that the gap energy�, which is the characteristic energy for superconducting phenomena, is
much smaller than the Fermi energy or, equivalently, that the Fermi-electron wavelength is
much smaller than the superconducting coherence lengthξ . This assumption is a very good
one for many applications.
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In clean systems, studied most intensively after the ballistic regime came within reach,
Andreev reflection [4] is the predominant process in terms of which the properties are
considered. The quasiclassical approximation for this process is equivalent to what is called
the Andreev approximation [5]. K̈ummel [6] was the first to point out that for an electron
moving slowly in the direction of an N/S interface, and so having a relatively large transverse
momentum, the Andreev approximation breaks down. In reflecting at the interface, not only is
a hole reflected, retracing the path of the incoming electron, but also a non-negligible electron
amplitude is reflected. While K̈ummel worked out this idea for a superconducting layer with
a thickness comparable to the superconducting coherence length,Šipr and Gÿorffy [7] were
the first to show explicitly its impact for a standard SNS junction.

It is the aim of the present paper to generalize the treatments available up to now in four
ways. Firstly we derive a Green’s-function description for junctions with an arbitrary number
of interfaces. Previous calculations were based on extensions of the basic equation for the
Green’s function for specially chosen configurations [8] and the approach set out by Ishii [9]
was followed. This approach is rather indirect and cumbersome, and the expressions obtained
so far are not generally applicable. By developing a multiple-scattering formulation which is
both transparent and flexible, these problems are overcome. The interfaces appear to be the
scattering objects, whereas the quasiparticles propagate freely through the metals between the
interfaces. Reflection and transmission processes are identified by scattering matrices. Our
main result, equation (24) for the systemT-matrix to be substituted in equation (20) for the
system Green’s function, has the basic structure of a multiple-scattering equation and clearly
contains thet-matrix for scattering at a single interface.

Secondly, the formulation is devised in such a way that both exact results and results
according to the Andreev approximation can be generated [8]. Thirdly, whileŠipr and Gÿorffy
[7] just made a choice for the gap function�, we will give some results for a self-consistently
calculated gap function. Finally, in addition to an SNS junction, a system with four instead of
two interfaces will be treated; it is shown schematically in figure 1. Some preliminary results
for an NS junction, not containing a self-consistent gap function yet, have been published by
Blaauboeret al [10].

The paper is organized as follows. In section 2 the equation is given for the Green’s
function describing a system with an arbitrary number of interfaces. Subsequently, in the
sections 3 and 4, two building blocks are constructed for this Green’s function containing
all multiple scattering. In section 3 an expression is given for the Green’s function of a
homogeneous system. In section 4 the Green’s function describing scattering at a single
interface is derived. The Green’s function describing scattering by an arbitrary number of
interfaces, accounting for all multiple scattering, is presented in section 5. In section 6 it is
shown how differences in the chemical potential and interface potentials simulating possible
imperfections of the contact planes can be accounted for easily. In section 7 the formalism is
specified for an SNS′ junction, and some results are shown for an SNSNS junction as well.
Self-consistent calculations of the gap function are presented in section 8. Finally, section 9
summarizes the conclusions.

2. The equation for the Green’s function

The matrix Green’s function satisfies the following differential equation [9]:

[iωnτ0 − Kτ3 − D(x)]G(r, r′, iωn) = δ(r − r′)τ0 (1)

whereG(r, r′, iωn) denotes the matrix Green’s function, the grand-canonical Hamiltonian
K ≡ H − µ is defined as the Hamiltonian minus the chemical potentialµ, and
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Figure 1. A two-dimensional picture of the systems studied. In the upper panel the vertical
direction stands for a transverse direction. In the lower panels the potential is shown, which is zero
in the normal part(s), and proportional to � in the superconducting parts.

ωn = (2n + 1)πkBT is the Matsubara frequency, T being the temperature. The matrices
τ 0, τ 3, and D(x) are given by

τ0 ≡
[

1 0
0 1

]
τ3 ≡

[
1 0
0 −1

]
D(x) ≡

[
0 �(x)

�∗(x) 0

]
(2)

where �(x) is the superconducting pair potential, which is modulated in the x-direction.
One could look at figures 1 and 2 for examples of �(x), corresponding to SNS and SNSNS
junctions and to the Kronig–Penney model respectively, the latter model representing an
infinite multilayer [8].
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Figure 2. The Kronig–Penney model for the pair potential, used in reference [8].

The systems of interest are either translationally invariant or confined in the y- and z-
directions. In the first case it is convenient to introduce the Fourier transform

G(x, x ′; ky, kz, iωn) =
∫

G(r, r′, iωn)e−iky(y−y ′)e−ikz(z−z′) dy dz (3)

with respect to y and z. The transformed Green’s function obeys

[iωnτ0 − Kxτ3 − D(x)]G(x, x ′; ky, kz, iωn) = δ(x − x ′)τ0 (4)

where the grand-canonical Hamiltonian Kx is given by

Kx ≡ − d2

dx2 − k2
Fx k2

Fx ≡ µ − k2
y − k2

z . (5)

Atomic units are used in the sense that h̄ = 2m = 1. In the case of a confined system, to
which the theory will be applied in the present paper, ky and kz are discrete. However, because
the quasicontinuous ky and kz for the translationally invariant system are discrete as well,
most expressions for the two cases are identical [10]. As is seen, the Hamiltonian does not
contain a single-electron potential. It is essential for the treatment of clean systems that there
is no impurity potential. In section 6 it will be shown that a modulated, but locally constant,
potential can be subsumed in kFx simply, causing kFx to be modulated as well.

Observable properties can always be expressed in terms of the Green’s function. In
that sense, the Green’s function contains all relevant information. An example of a quantity
expressed in Green’s functions is the pair potential itself, by means of the self-consistency
condition

�(x) = −kBT V (x)
1

At

∑
ky,kz

∑
n

G12(x, x; ky, kz, iωn) (6)

in which G12 signifies the upper right element of the matrix Green’s function G and At stands
for the transverse cross section of the system. For an infinite system, At becomes infinity and
the summations over ky and kz become integrals in the usual way. Another example comes
from Tanaka and Tsukada [8], who computed supercurrent densities from the Green’s function
by means of the formula

I = − ie

At

∑
ky ,kz

lim
x ′→x

(
∂

∂x ′ − ∂

∂x

)
kBT

∑
n

G11(x, x
′; ky, kz, iωn) (7)

where G11 signifies the upper left element of the matrix Green’s function G. Note that both
equations (6) and (7) require a nontrivial summation over the Matsubara frequencies. The
local quasiparticle density of states (LDOS) is given by

ρ(x, ε) = − 1

π
lim
δ→0

1

At

∑
ky,kz

ImG11(x, x; ky, kz, ε + iδ). (8)
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For this equation, the analytical continuation of the temperature Green’s function is used. It
is obtained simply by making the replacement iωn → ε + iδ, with ωn > 0.

3. The Green’s function for the homogeneous superconductor

The solution of equation (4) for a homogeneous superconductor is easily written down [9].
Assuming a constant pair potential �(x) = �SeiφS , denoting the corresponding D(x) by the
constant DS, denoting G for this special case by GS, and suppressing in it the dependence on
ky, kz, and iωn, the result reads as

GS(x, x
′) =

∑
σ

Gσ
S (x, x

′) (9a)

Gσ
S (x, x

′) = dσ
S Mσ

S eiσkσS |x−x ′| (9b)

kσS = sgnωn

√
k2
Fx + iσ*S Im σkσS > 0 (9c)

i*S =
√
(iωn + 0+)2 − �2

S (9d)

Mσ
S = iωnτ0 + iσ*Sτ3 + DS (9e)

dσ
S = − 1

4*Sk
σ
S
. (9f )

The upper index σ is ±1 and the summation in equation (9a) runs over both possibilities.
The condition for the imaginary part of kσS guarantees the convergence of GS(x, x

′) when one
of the coordinates approaches infinity. The infinitesimally positive quantity 0+ in equation
(9d) is added to ensure that i*S → iωn in the case where �S vanishes. This implies that
sgn *S = sgn ωn. When GS(x, x

′) is substituted in equation (4), the dependence on |x − x ′|
in equation (9b) leads to the δ-function on the right-hand side and the equation is satisfied.

A particularly clear way of expressing the Green’s function is obtained by means of the
solutions of the differential equation

[iωnτ0 − Kxτ3 − D(x)]ψσν
S (x) = 0. (10)

This is, in fact, the Bogoliubov equation [8] with an imaginary eigenvalue iωn. Note that
a Hermitian operator can have complex eigenvalues, as long as no boundary conditions are
applied to the wave functions ψS

σν(x). It is easily checked that the solutions read as

ψσν
S (x) =

[
uσ

S eiφS/2

u−σ
S e−iφS/2

]
eiσνkσS x (11)

with

uσ
S =

√
iωn + iσ*S

(note that uσ
Su

−σ
S = �S). The four standard solutions are labelled with the sign indices σ and

ν, which can both take the values ±1. Obviously, these can be related to the solutions of the
ordinary Bogoliubov equation [8] by making the substitution iωn → ε. We then obtain wave
functions whose index σ refers to the type of the propagating particle (electronlike for σ = +
and holelike for σ = −) and whose index ν indicates the direction of propagation.

In order to express the Green’s function in terms of ψσν
S (x), a conjugate wave function is

needed, namely,

ψ̃
σν
S (x) =

[
uσ

S e−iφS/2 u−σ
S eiφS/2

]
eiσνkσS x (12)
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Figure 3. The free propagation of a quasiparticle. Summation over σ yields the Green’s function
of a homogeneous superconductor .

(which is not the Hermitian conjugate). Unlike the original wave function, ν has now to be
explained as minus the direction of propagation. This is necessary to arrive at a consistent
interpretation in multiple-scattering language. Using equations (11) and (12), one can write
the σ -dependent Green’s function parts, equation (9b), as follows:

Gσ
S (x, x

′) = dσ
S ψσ−

S (x<)ψ̃
σ+
S (x>) = dσ

S ψσ+
S (x>)ψ̃

σ−
S (x<) (13)

where x> (x<) denotes the largest (smallest) coordinate of x and x ′. From the similarity of
equations (4) and (10), it is immediately seen that expression (13) satisfies equation (4) when
x 
= x ′. The singularity in equation (13) at x = x ′ ensures that the δ-function on the right-hand
side of equation (4) appears.

It is illuminating to adopt the following interpretation of the Green’s function Gσ
S (x, x

′),
which is shown in figure 3. Assume that x < x ′. The Green’s function can then be expressed in
terms of dσ

S ψ
σ−
S (x)ψ̃

σ+
S (x ′). In this form, it describes the propagation of a particle travelling

from x ′ to x. The particle is either electronlike (σ = +1) or holelike (σ = −1). The second
index of the first wave function indicates where the particle is going to—in this example to the
negative side, because x < x ′. The second index of the conjugate function indicates where
the particle is coming from—in this example, the positive side. The direction of motion in x ′
is minus the second index of the conjugate wave function ψ̃

σ+
S (x ′). The total Green’s function

GS(x, x
′) is the sum of the two possible ways to propagate from x ′ to x, namely, either as

an electronlike or as a holelike particle. Depending on σ , figure 3 shows the electronlike or
holelike term of the Green’s function (9a). Each term consists of a contribution ψ̃

σ+
S (x ′) for

the departing quasiparticle, a contribution ψσ−
S (x) for the arriving quasiparticle, and a factor

dσ
S for the propagation. It is a general feature of a Green’s function that it can be written as

the sum over all processes in which the two coordinates are connected by the propagation of
a particle through the system.

As soon as boundary conditions are concerned it is convenient to extend the two-
component vectors (11) and (12) to four-component vectors by including the derivatives
of the wave functions. For example, instead of equation (11) we use

ψσν
S (x) ≡




uσ
S eiφS/2

u−σ
S e−iφS/2

iσνkσS u
σ
S eiφS/2

iσνkσS u
−σ
S e−iφS/2


 eiσνkσS x. (14)

The boundary conditions then simply require the continuity of all four components. Below, it
will be implicitly assumed that the wave functions are four-component vectors. This makes
the Green’s function (13) a 4 × 4 matrix, of which the upper left quarter is the actual 2 × 2
matrix Green’s function.
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Figure 4. The propagation of a quasiparticle in a system with two half-infinite pieces of metal
joined by a single interface. x and x′ are on different sides. Summation over σ and σ ′ yields the
Green’s function G−j+j (x, x

′).

Figure 5. The propagation of a quasiparticle in a system with two half-infinite pieces of metal
joined by a single interface. x and x′ are on the same side. The propagation can be direct (a) or via
the interface (b). (a) summed over σ plus (b) summed over σ and σ ′ yields the Green’s function
G+j+j (x, x

′).

4. The Green’s function accounting for scattering at a single interface

The first step towards the discussion of arbitrary layered structures is the analysis of a system
with two half-infinite pieces of metal separated by a single interface. Let xj be the position of
the interface. One can infer from equations (4) and (10) that the general form of the Green’s
function should be

Gνjν ′j (x, x
′) = Gνj (x, x

′)δνν ′ +
∑
σσ ′

dσ
νj d

σ ′
ν ′jψ

σν
νj (x)tσσ

′νν ′
νjν ′j ψ̃

σ ′ν ′
ν ′j (x ′) (15)

where, according to equations (9a) and (13),

Gνj (x, x
′) =

∑
σ

dσ
νjψ

σµ
νj (x)ψ̃

σ,−µ
νj (x ′) (16)

where

µ = sgn(x − x ′).

All subscripts are material indices and serve to indicate the different parts of the system, just
as the subscript S referred to the superconductor in the previous equations. The following
indexing has been adopted (see also figures 4 and 5). For Gνj (x, x

′), dσ
νj , ψσν

νj (x), and
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ψ̃
σν
νj (x), the subscript (νj) refers to the part of the system that is on the ν-side of the interface

with position xj. Since there is only a single interface, (−j) refers to the material to the left
of xj, whereas (+j) refers to the material to the right of the interface. For Gνjν ′j ′(x, x ′),
the unprimed and primed indices apply in the same way to the positions of x and x ′,
respectively. So, for example, G+j+j (x, x

′) is only defined for both x and x ′ to the right of the
interface j.

The first term in equation (15) is fully responsible for the appearance of the δ-function
in equation (4). So to satisfy equation (4), the second term should be continuous and have a
continuous derivative. The first term accounts for the possible ways of propagating from x ′
to x without being scattered at the interface; see figure 5(a). The second term describes the
propagation via the interface; see figures 4 and 5(b). The reflection and transmission processes
are described by the scattering matrix tσσ

′νν ′
νjν ′j . It refers to the process where a σ ′-particle is

incident from the ν′-side of the interface. After being scattered it has been changed to a
σ -particle and leaves the interface on the ν-side. During the scattering process the particle
can change its type, so the possibility of Andreev reflection is incorporated in the formulation.
The fact that the wave functions have the same upper right and lower left indices takes care
of the convergence of the Green’s function at plus and minus infinity. This reflects the notion
that in the present case of a single interface a particle can be scattered only once. Therefore,
the directions of motion of the incident and scattered particles are coupled to the positions ν

and ν′ of x and x ′ with respect to the interface.
Figure 5 shows the relevant processes in the expansion of G+j+j (x, x

′). Figure 5(a) shows
the two free propagations from x ′ to x (σ = ±1). These terms are constructed in the same
way as was done for figure 3. Figure 5(b) shows the four possible reflections connecting x ′
to x (σ = ±1, σ ′ = ±1). These terms consist of a conjugate wave function for the point
of departure, a wave function for the point of arrival, two factors dσ

νj and dσ ′
ν ′j for the two

propagations, and a scattering matrix tσσ
′νν ′

νjν ′j for the reflection. Similarly, figure 4 is the
visualization of G−j+j (x, x

′).
The present way of writing the general solution is somewhat different from the path

followed by Ishii [9]. By introducing the matrices T σ,σ ′
in the way that Ishii does in his

equation (2.12), the problem is underdetermined. He has to impose additional restrictions on
the matrices to arrive at a well-defined problem. This is done in his equation (2.21). This
procedure is not very elegant and is avoided in the present treatment. Furthermore, his usage
of integral equations requires the evaluation of complex integrals. This is another thing that
can be avoided, as is shown in the present treatment.

The scattering matrix tσσ
′νν ′

νjν ′j ′ is found by applying the boundary conditions. The present
method of indexing allows for a very compact notation. The condition for x = xj reads as

∑
ν

νGνjν ′j (xj , x
′) = 0 (∀x ′). (17)

It is sufficient to impose the boundary condition on the first coordinate only. This leads to
a closed set of equations. Due to the special form of equation (15), applying the boundary
condition to the second coordinate would yield the same equations. When x = xj it is known
that x ′ is situated on the ν′-side of x and that consequently µ = −ν′, so equation (15) with
equation (16) can be written as

Gνjν ′j (xj , x
′) =

∑
σ ′

dσ ′
ν ′j

(
ψ

σ ′,−ν ′
ν ′j (xj )δνν ′ +

∑
σ

dσ
νjψ

σν
νj (xj )t

σσ ′νν ′
νjν ′j

)
ψ̃

σ ′ν ′
ν ′j (x ′). (18)
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Figure 6. The propagation of a particle through a layered system. The dashed line represents an
example of a multiple-scattering process. The boxes at the top contain the layer indices.

Substituting this expression into the boundary condition and using the linear independence of
the four conjugate wave functions (12), the boundary condition changes into∑

σν

νdσ
νjψ

σν
νj (xj )t

σσ ′νν ′
νjν ′j = −ν′ψσ ′,−ν ′

ν ′j (xj ) (∀σ ′, ν′). (19)

This is a well-defined set of equations for the t-matrix elements. The solution is found by
regarding tσσ

′νν ′
νjν ′j and ψσν

νj (xj ) as 4 × 4 matrices. The first has row index (σ , ν) and column
index (σ ′, ν′). The second has column index (σ , ν), whereas the four components of ψσν

νj (xj )

fill up the four rows.

5. The Green’s function for scattering at multiple interfaces

Consider a system with an arbitrary number of interfaces j, with position coordinates
xj < xj+1. The scattering of the quasiparticles will be described in terms of the scattering

matrices T
σσ ′µµ′
νjν ′j ′ . The meaning of the indices is the same as before: a σ ′-particle is coming

from the µ′-direction through the part of the system on the ν′-side of the interface j ′. After an
arbitrary number of scattering processes, it ends up as a σ -particle travelling in the µ-direction
through the part of the system on the ν-side of the interface j.

This is illustrated in figure 6 for T σσ ′++
+2+3 , where the dashed line is used to signify the

multiple-scattering process. In accordance with this interpretation, the general form of the
Green’s function is

Gνjν ′j ′(x, x ′) = Gνj (x, x
′)[δνν ′δjj ′ + δ−νν ′δj+ν,j ′]

+
∑
σσ ′

∑
µµ′

dσ
νj d

σ ′
ν ′j ′ψ

σµ
νj (x)T

σσ ′µµ′
νjν ′j ′ ψ̃

σ ′µ′
ν ′j ′ (x ′). (20)

The first term is more complicated than in equation (15). The reason for this is that there is a

redundancy in the indexing of various parts of the system. A layer indicated by, for example,
(νj) = (+j) can equally well be indicated by (−ν, j + ν) = (−, j + 1). The first combination
addresses the layer to the right of the jth interface, whereas the latter indicates the layer to
the left of the (j + 1)th interface. Obviously, these layers are the same. A second difference
from equation (15) is that the second term contains extra summations over µ and µ′. The
reason for this is that the convergency conditions for the Green’s function cease to apply for
the inner layers. The particle can be scattered many times. In inner layers, it can leave x ′
in either direction and in the end nevertheless arrive at x. Similarly, in inner layers, it can
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reach x from either direction. Of course, in the outer two half-infinite parts of the system the
Green’s function must converge. When jmin and jmax are the leftmost and rightmost interfaces,
respectively, the boundary conditions at infinity require that

T
σσ ′µ+
νj,−jmin

= T
σσ ′µ−
νj,+jmax

= T
σσ ′+µ′
−jmin,ν ′j ′ = T

σσ ′−µ′
+jmax,ν ′j ′ = 0.

As for the single interface, the boundary condition for x = xj is∑
ν

νGνjν ′j ′(xj , x
′) = 0 (∀x ′and ∀ν′, j ′). (21)

From equations (20) and (16) it is seen that

Gνjν ′j ′(xj , x
′) =

∑
σ ′µ′

dσ ′
ν ′j ′

(
ψ

σ ′,−µ′
νj (xj )δµ′ν[δνν ′δjj ′ + δ−νν ′δj+ν,j ′]

+
∑
σµ

dσ
νjψ

σµ
νj (xj )T

σσ ′µµ′
νjν ′j ′

)
ψ̃

σ ′µ′
ν ′j ′ (x ′). (22)

Substituting this, and writing out the summation over µ for µ = ±ν, one finds from condition
(21) for the T-matrices that∑
σν

νdσ
νjψ

σν
νj (xj )T

σσ ′νµ′
νjν ′j ′ = −µ′ψσ ′,−µ′

µ′j (xj )[δµ′ν ′δjj ′ + δ−µ′ν ′δj+µ′,j ′]

+
∑
σν

−νdσ
νjψ

σ,−ν
νj (xj )T

σσ ′,−νµ′
νjν ′j ′ (∀σ ′, µ′). (23)

By use of the implicit solutions of equation (19) it can be turned into the familiar form of a
Lippmann–Schwinger equation:

T
σσ ′νµ′
νjν ′j ′ = t

σσ ′νµ′
νjµ′j [δµ′ν ′δjj ′ + δ−µ′ν ′δj+µ′,j ′ ] +

∑
σ ′′ν ′′

tσσ
′′νν ′′

νjν ′′j dσ ′′
ν ′′j T

σ ′′σ ′,−ν ′′µ′
ν ′′jν ′j ′ . (24)

This equation, together with equation (20), forms the main result of the present paper. The

idea of multiple scattering shows up clearly in equation (24). The matrix T
σσ ′νµ′
νjν ′j ′ is found by

adding all possible processes that yield the correct final state. The first term in equation (24)
accounts for the possibility that the particle is scattered once. The second term collects the
processes in which the particle is scattered once due to tσσ

′′νν ′′
νjν ′′j and an arbitrary number of

other times due to T
σ ′′σ ′,−ν ′′µ′
ν ′′jν ′j ′ .

Figure 7 shows how figure 6 develops on applying equation (24) to T σσ ′++
+2+3 . Figure 7(a)

shows the processes that end with a transmission (ν′′ = −ν). Figure 7(b) shows the processes
that end with a reflection (ν′′ = ν).

Repeated application of equation (24) reveals the correct multiplication rules for the
t-matrices. An example of a correct sequence is

tσσ
′−νν ′

−νjν ′j dσ ′
ν ′j t

σ ′σ ′′,−ν ′ν ′′
−ν ′,j+ν ′,ν ′′,j+ν ′d

σ ′′
ν ′′,j+ν ′ t

σ ′′σ ′′′,−ν ′′ν ′′′
−ν ′′,j+ν ′+ν ′′,ν ′′′,j+ν ′+ν ′′ · · · .

The outgoing-particle type of one t-matrix has to equal the incoming-particle type of the next
t-matrix. However, when a scattering process ends with a particle travelling in the ν-direction,
the next scattering will start with a particle coming from the −ν-direction. The lower indices,
which indicate the different parts of the system, have to match the geometry of the system.

6. Locally constant and interface barrier potentials

It was mentioned below equation (5) that a modulated, but locally constant potential can
be accounted for by taking it into the definition of the one-dimensional Fermi wave vector:
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Figure 7. A schematic representation of equation (24). Summation over σ ′′ of diagrams (a) and
(b) yields the diagram of figure 6.

k2
Fx(x) ≡ µ − k2

y − k2
z − V (x). It is also easy to account for δ-potentials at the interfaces.

Assume that the grand-canonical Hamiltonian reads as

Kx ≡ − d2

dx2 − k2
Fx +

∑
j

Vj δ(x − xj ). (25)

The four-component standard solutions are still given by equation (14), but the matrix Green’s
function built up with them is subject to different boundary conditions. Instead of equation
(17) one has ∑

ν

SνjGνjν ′j (xj , x
′) = 0 (26)

where

Sνj ≡




ν 0 0 0
0 ν 0 0

− 1
2Vj 0 ν 0

0 − 1
2Vj 0 ν


 . (27)

One can check that this corresponds to the more familiar conditions for the 2 × 2 matrix
Green’s function:

G+jν ′j (xj , x
′) = G−jν ′j (xj , x

′) (28a)

d

dx
G+jν ′j (xj , x

′)
∣∣∣∣
x=xj

= d

dx
G−jν ′j (xj , x

′)
∣∣∣∣
x=xj

+ VjG−jν ′j (xj , x
′). (28b)

Expanding equation (26), one finds∑
σν

dσ
νjSνjψ

σν
νj (xj )t

σσ ′νν ′
νjν ′j = −Sν ′jψ

σ ′,−ν ′
ν ′j (xj ) (29)

which takes the place of equation (19). Because equations (21) and (23) must be adapted
similarly, equation (24) remains unaltered. The whole of the remaining analysis holds in the
presence of interface potentials. Note also that the matrices Sνj and U(φνj ) commute.



8718 R T W Koperdraad et al

Figure 8. The pair potential in an SNS junction. The boxes at the top contain the general layer
indices. The indices S, N, and S′ are specific to the SNS junction configuration.

7. The local density of states in SNS and SNSNS junctions

As an introduction to some results for the local density of states it is instructive to work out
equation (24) for a system with two interfaces, as shown in figure 8.

One can remove the redundancy in the layer indexing by requiring that ν = µ and ν′ = µ′

in each T-matrix T
σσ ′µµ′
νjν ′j ′ . This can be done without loss of generality. The indices ν and ν′

are then completely fixed and a single, unequivocal choice is left for the interface indices j and
j ′. Equation (24) now simplifies to

T σσ ′νν ′
νjν ′j ′ = tσσ

′νν ′
νjν ′j δjj ′ +

∑
σ ′′ν ′′

t
σσ ′′,νν ′′
νjν ′′j dσ ′′

ν ′′j T
σ ′′σ ′,−ν ′′ν ′
−ν ′′,j+ν ′′,ν ′j ′ (30)

where we used (ν′′j) = (−ν′′, j + ν′′). The convergence of the Green’s function requires that

T
σ ′′σ ′,−ν ′′µ′
−ν ′′,j+ν ′′,ν ′j ′ vanishes when j + ν′′ is a nonexistent interface. It is convenient to substitute

−ν for ν, so that all sequences of upper indices take on the same form. Doing this and using
the fact that there are only two interfaces, equation (30) can be expanded, yielding[

T
σσ ′,−νν ′
−ν1ν ′1 T

σσ ′,−νν ′
−ν1ν ′2

T
σσ ′,−νν ′
−ν2ν ′1 T

σσ ′,−νν ′
−ν2ν ′2

]
=

[
t
σσ ′,−νν ′
−ν1ν ′1 0

0 t
σσ ′,−νν ′
−ν2ν ′2

]

+
∑
σ ′′ν ′′

[
0 t

σσ ′′,−νν ′′
−ν1ν ′′1 dσ ′′

ν ′′1δν ′′+

t
σσ ′′,−νν ′′
−ν2ν ′′2 dσ ′′

ν ′′2δν ′′− 0

][
T

σ ′′σ ′,−ν ′′ν ′
−ν ′′1ν ′1 T

σ ′′σ ′,−ν ′′ν ′
−ν ′′1ν ′2

T
σ ′′σ ′,−ν ′′ν ′
−ν ′′2ν ′1 T

σ ′′σ ′,−ν ′′ν ′
−ν ′′2ν ′2

]
. (31)

Instead of using 2 × 2 matrices and writing out the summation over σ ′′ and ν′′, one
can regard each matrix as an 8 × 8 matrix with the sign indices as extra labels. All 64 T-
matrix elements are then grouped in an 8 × 8 matrix, which obeys an equation that is easily
solved. There is no problem in extending the procedure to an arbitrary, but finite number of
interfaces. This is simply done by making the matrices in the Lippmann–Schwinger equation
correspondingly larger. The solution is always found by a straightforward matrix inversion.

Applications of the general equation (24) to an arbitrary multilayer, a periodic multilayer,
or a current-carrying multilayer will not be given explicitly in the present paper, but the
interested reader can find them in Koperdraad’s PhD Thesis [11]. The same holds for the
simplifications achieved by applying the frequently used Andreev approximation.
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We conclude by showing some applications to an SNS and an SNSNS system, depicted
schematically in figure 1. The system length L has been chosen to be of the same order of
magnitude as in the work of Blaauboer et al [10], and for the applications of the theory in the
present section it is equal to 4000 Bohr. The system width of the bar-shaped system, withLy =
Lz = Lt , has been chosen much more critically, such that the highest transverse mode has the
smallest longitudinal momentum which still allows for propagation. It is determined by the gap
� and the Fermi energy µ, chosen to be equal to 0.0001 Ryd and 0.5 Ryd. If one requires that
only the (0, 0), (0, 1), and (1, 0) modes propagate, Lt follows from the condition π2/L2

t = µ−
� = 0.4999 Ryd for the maximum transverse mode energy. This leads to Lt = 4.4438. If one
allows for propagation of one more mode, the (1, 1) mode, one finds according to 2π2/L2

t =
0.4999 Ryd that Lt = 6.2838 Bohr. The local density of states (LDOS) is calculated using

LDOS(x,E) = − 1

πLyLz

lim
δ→0

∑
ky,kz

ImG11(x, x; ky, kz, E + iδ) (32)

which is the finite-transverse-size version of equation (8). In figure 9 the LDOS is shown for
Lt = 6.2838 at x = −1500 Bohr. Both the states according to the Andreev approximation
(AA) and the exact states are shown, using a small but not negligible energy width δ. One
clearly sees the nice set of equidistant AA states corresponding to the highest mode, the (1, 1)
mode, and the splitting in the exact case. The two states corresponding to the (0,0) and degener-
ate (0, 1) and (1, 0) modes lie just below the gap and can be recognized as shoulders of the high-
est peaks. The peaks for the exact states have different heights, which is directly related to the
choice of the position x and reflects the fact that the LDOS is proportional to the absolute square
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Figure 9. A plot of the LDOS at x = −1500 Bohr against the ratio of the quasiparticle excitation
energy E to the gap �, for the SNS system depicted in figure 1, with Lt = 6.2838 Bohr, L =
4000 Bohr, and � = 0.0001 Ryd. The solid and broken curves represent the exact calculation and
the Andreev approximation respectively.



8720 R T W Koperdraad et al

0.0 0.2 0.4 0.6 0.8 1.0
E/∆

0

20

40

60

80
Lo

ca
l D

en
si

ty
 o

f S
ta

te
s

AA curve
Exact curve

Figure 10. A plot of the LDOS against E/�, at x = −1500, for the SNSNS system depicted in
figure 1, with Lt = 4.4438. The value of h is 0.25. Both the exact results and the ones within the
Andreev approximation (AA) are shown.

of the state functions. For the exact solution the state functions are the even and odd, cosine and
sine functions [7]. In the AA one just encounters plane waves, leading to equal height of the
AA peaks. The exact LDOS for another position shows a different distribution of peak heights.

In figure 10 the LDOS is shown for an SNSNS junction having the smaller transverse
width of Lt = 4.4438.

In view of this, only the (0, 0), (0, 1), and (1, 0) modes can propagate. The interfaces
are chosen as indicated in the lower panel of figure 1. Although the superconducting layer
in the middle has the same metallic properties as the superconductors forming the junction,
due to the proximity effect one expects a gap value h� with h < 1, which will be confirmed
by the self-consistent calculation to be presented in the following section. It is instructive to
compare figure 10 with figure 11, calculated for the same configuration, but with h = 0. As
we should, we found the same figure for the SNS system, because h = 0 implies absence of
the middle superconducting sheet. In figure 11 only the exact states are shown, but with a
value for δ which is negligible. Note the much larger scale for this very small δ. Compared
to this figure, the lower states in figure 10, and particularly the state which lies below the gap
value of 0.25�, are pushed up. Because Andreev states behave as vF /L, vF being the Fermi
velocity, one would expect a rise by a factor of 4. In the following section we will show that
the two N parts of the junction are not uncoupled yet, so the rise is somewhat smaller.

Now we turn to the self-consistent calculation of the gap �.
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Figure 11. The LDOS against E/� at x = −1500, for an SNSNS system in which Lt = 4.4438
and h = 0.
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Figure 12. The self-consistent gap for a bar-shaped superconductor of macroscopic length in
one direction, and with a finite transverse width Lt. The summations over the transverse wave
vectors ky and kz have been carried out in a semicontinuous way for the solid curve, and in a rather
coarse-grained way for the dotted curve. The limit for Lt → ∞ is given by the constant bold line.
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Figure 13. The pair amplitude against the distance from the middle, which is chosen at x = 0, of an
SNSNS system with a transverse width Lt = 100. The interfaces are chosen at x = ±2000,±5000
for the solid curve and x = ±2000,±7000 for the dotted curve.

8. Self-consistent calculation of the gap

Using the self-consistency condition (6) for a bar-shaped superconductor, for which At =
LyLz, we first calculated the gap� for an infinite homogeneous superconducting bar. Looking
at the two systems depicted in figure 1, it is clear that the gap value found in that way must be
the value for the outer superconducting parts of both junctions. After that one has to determine
the gap value of the middle layer in the SNSNS junction. Depending on how one carries out
the summation over the transverse wave vectors ky and kz, one obtains the upper or lower curve
in figure 12. The bold line lies at the gap value for a bar superconductor with infinite width Lt,
and so at the bulk value, to which the finite-bar gap values should converge. The oscillations
in the solid and dashed curves come from the summation over discrete values of ky and kz. The
dashed curve results from a summation over the entire range of the transverse wave vectors, in
which also a cut-off at 3µ is applied, to which the results are not very sensitive. The mesh used
has the spacing π/Lt . But it appears that the result is very sensitive to how the summation
crosses the Fermi energyµ. The solid curve is obtained by summing up to just below µ, and by
replacing the rest of the sum by the corresponding integral. We believe that the true behaviour
lies in between the two curves, but somewhat closer to the solid curve than to the dashed curve.
For both curves it holds that on decreasing the width Lt, superconductivity is suppressed.

Using the self-consistent gap value for the outer superconductors, one can calculate the
self-consistent gap value for the superconducting layer in the middle of the SNSNS junction
considered. In figure 13 we display the pair amplitude F(x) ≡ �/V , which can have a finite
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value in the N regions as well. This is done for two system lengths, 10 000 Bohr and 14000
Bohr, and for Lt = 100 Bohr. The thickness of the central superconducting layer is in both
cases 4000 Bohr. The self-consistency is obtained by averaging the x-dependent gap value
in the middle and by using that constant in the next iteration, a method employed already by
Tanaka and Tsukada [8]. In this figure the proximity effect is nicely illustrated. A finite pair am-
plitude is found in the N layers, and this amplitude decreases when the N layers become thicker.

Similarly, the pair amplitude in the middle superconductor is smaller for a larger separation
from the outer superconductors caused by thicker N layers. In order to show this feature, we
have chosen to display the pair amplitude, because the gap value in the N layers, havingV = 0,
vanishes, and the corresponding figure would have been less informative.

9. Conclusions

An expression was derived for the Gor’kov Green’s function of an arbitrary layered structure
composed of clean superconductors and ballistic metals. A multiple-scattering approach was
developed, leading to an easily recognizable and flexible form of the Green’s function. The
formalism is exact, but results according to the Andreev approximation can be obtained as
well. The formalism is applied to an SNS and an SNSNS junction, while the gap values have
been obtained self-consistently. Proximity effects come out nicely. In addition, the breakdown
of the Andreev approximation, mentioned by Kümmel [6] and illustrated by Šipr and Györffy
[7], is shown convincingly for junctions having a critical transverse width.

Applications to other systems, such as a multilayer and current-carrying systems, are in
preparation.
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